[论文翻译]HAMLET:一种基于分层多模态注意力机制的人类活动识别算法
摘要— 为了与人类流畅协作,机器人需要具备准确识别人体活动的能力。尽管现代机器人配备了多种传感器,但由于多模态数据融合的困难,稳健的人体活动识别(HAR)对机器人而言仍是具有挑战性的任务。为解决这些难题,本研究提出了一种基于深度神经网络的多模态HAR算法HAMLET。HAMLET采用分层架构,其底层通过多头自注意力机制从单模态数据中编码时空特征。我们开发了一种新颖的多模态注意力机制,用于解耦并融合显著的单模态特征,从而在上层计算多模态特征。最终,多模态特征被输入全连接神经网络以识别人体活动。我们通过在三个人体活动数据集上与多种先进活动识别算法进行性能对比来评估本算法。